[ SEA-GHOST MINI SHELL]
#-----------------------------------------------------------------------------
# ply: yacc.py
#
# Author(s): David M. Beazley (dave@dabeaz.com)
#
# Copyright (C) 2001-2006, David M. Beazley
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See the file COPYING for a complete copy of the LGPL.
#
#
# This implements an LR parser that is constructed from grammar rules defined
# as Python functions. The grammer is specified by supplying the BNF inside
# Python documentation strings. The inspiration for this technique was borrowed
# from John Aycock's Spark parsing system. PLY might be viewed as cross between
# Spark and the GNU bison utility.
#
# The current implementation is only somewhat object-oriented. The
# LR parser itself is defined in terms of an object (which allows multiple
# parsers to co-exist). However, most of the variables used during table
# construction are defined in terms of global variables. Users shouldn't
# notice unless they are trying to define multiple parsers at the same
# time using threads (in which case they should have their head examined).
#
# This implementation supports both SLR and LALR(1) parsing. LALR(1)
# support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu),
# using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles,
# Techniques, and Tools" (The Dragon Book). LALR(1) has since been replaced
# by the more efficient DeRemer and Pennello algorithm.
#
# :::::::: WARNING :::::::
#
# Construction of LR parsing tables is fairly complicated and expensive.
# To make this module run fast, a *LOT* of work has been put into
# optimization---often at the expensive of readability and what might
# consider to be good Python "coding style." Modify the code at your
# own risk!
# ----------------------------------------------------------------------------
__version__ = "2.2"
#-----------------------------------------------------------------------------
# === User configurable parameters ===
#
# Change these to modify the default behavior of yacc (if you wish)
#-----------------------------------------------------------------------------
yaccdebug = 1 # Debugging mode. If set, yacc generates a
# a 'parser.out' file in the current directory
debug_file = 'parser.out' # Default name of the debugging file
tab_module = 'parsetab' # Default name of the table module
default_lr = 'LALR' # Default LR table generation method
error_count = 3 # Number of symbols that must be shifted to leave recovery mode
import re, types, sys, hashlib, os.path
try:
from cStringIO import StringIO
except ImportError:
from io import StringIO
from . import util
# Exception raised for yacc-related errors
class YaccError(Exception): pass
#-----------------------------------------------------------------------------
# === LR Parsing Engine ===
#
# The following classes are used for the LR parser itself. These are not
# used during table construction and are independent of the actual LR
# table generation algorithm
#-----------------------------------------------------------------------------
# This class is used to hold non-terminal grammar symbols during parsing.
# It normally has the following attributes set:
# .type = Grammar symbol type
# .value = Symbol value
# .lineno = Starting line number
# .endlineno = Ending line number (optional, set automatically)
# .lexpos = Starting lex position
# .endlexpos = Ending lex position (optional, set automatically)
class YaccSymbol:
def __str__(self): return self.type
def __repr__(self): return str(self)
# This class is a wrapper around the objects actually passed to each
# grammar rule. Index lookup and assignment actually assign the
# .value attribute of the underlying YaccSymbol object.
# The lineno() method returns the line number of a given
# item (or 0 if not defined). The linespan() method returns
# a tuple of (startline,endline) representing the range of lines
# for a symbol. The lexspan() method returns a tuple (lexpos,endlexpos)
# representing the range of positional information for a symbol.
class YaccProduction:
def __init__(self,s,stack=None):
self.slice = s
self.pbstack = []
self.stack = stack
def __getitem__(self,n):
if type(n) == int:
if n >= 0: return self.slice[n].value
else: return self.stack[n].value
else:
return [s.value for s in self.slice[n.start:n.stop:n.step]]
def __setitem__(self,n,v):
self.slice[n].value = v
def __len__(self):
return len(self.slice)
def lineno(self,n):
return getattr(self.slice[n],"lineno",0)
def linespan(self,n):
startline = getattr(self.slice[n],"lineno",0)
endline = getattr(self.slice[n],"endlineno",startline)
return startline,endline
def lexpos(self,n):
return getattr(self.slice[n],"lexpos",0)
def lexspan(self,n):
startpos = getattr(self.slice[n],"lexpos",0)
endpos = getattr(self.slice[n],"endlexpos",startpos)
return startpos,endpos
def pushback(self,n):
if n <= 0:
raise ValueError("Expected a positive value")
if n > (len(self.slice)-1):
raise ValueError("Can't push %d tokens. Only %d are available." % (n,len(self.slice)-1))
for i in range(0,n):
self.pbstack.append(self.slice[-i-1])
# The LR Parsing engine. This is defined as a class so that multiple parsers
# can exist in the same process. A user never instantiates this directly.
# Instead, the global yacc() function should be used to create a suitable Parser
# object.
class Parser:
def __init__(self,magic=None):
# This is a hack to keep users from trying to instantiate a Parser
# object directly.
if magic != "xyzzy":
raise YaccError("Can't instantiate Parser. Use yacc() instead.")
# Reset internal state
self.productions = None # List of productions
self.errorfunc = None # Error handling function
self.action = { } # LR Action table
self.goto = { } # LR goto table
self.require = { } # Attribute require table
self.method = "Unknown LR" # Table construction method used
def errok(self):
self.errorcount = 0
def restart(self):
del self.statestack[:]
del self.symstack[:]
sym = YaccSymbol()
sym.type = '$end'
self.symstack.append(sym)
self.statestack.append(0)
def parse(self,input=None,lexer=None,debug=0):
lookahead = None # Current lookahead symbol
lookaheadstack = [ ] # Stack of lookahead symbols
actions = self.action # Local reference to action table
goto = self.goto # Local reference to goto table
prod = self.productions # Local reference to production list
pslice = YaccProduction(None) # Production object passed to grammar rules
pslice.parser = self # Parser object
self.errorcount = 0 # Used during error recovery
# If no lexer was given, we will try to use the lex module
if not lexer:
from . import lex
lexer = lex.lexer
pslice.lexer = lexer
# If input was supplied, pass to lexer
if input:
lexer.input(input)
# Tokenize function
get_token = lexer.token
statestack = [ ] # Stack of parsing states
self.statestack = statestack
symstack = [ ] # Stack of grammar symbols
self.symstack = symstack
pslice.stack = symstack # Put in the production
errtoken = None # Err token
# The start state is assumed to be (0,$end)
statestack.append(0)
sym = YaccSymbol()
sym.type = '$end'
symstack.append(sym)
while 1:
# Get the next symbol on the input. If a lookahead symbol
# is already set, we just use that. Otherwise, we'll pull
# the next token off of the lookaheadstack or from the lexer
if debug > 1:
print('state', statestack[-1])
if not lookahead:
if not lookaheadstack:
lookahead = get_token() # Get the next token
else:
lookahead = lookaheadstack.pop()
if not lookahead:
lookahead = YaccSymbol()
lookahead.type = '$end'
if debug:
errorlead = ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip()
# Check the action table
s = statestack[-1]
ltype = lookahead.type
t = actions.get((s,ltype),None)
if debug > 1:
print('action', t)
if t is not None:
if t > 0:
# shift a symbol on the stack
if ltype == '$end':
# Error, end of input
sys.stderr.write("yacc: Parse error. EOF\n")
return
statestack.append(t)
if debug > 1:
sys.stderr.write("%-60s shift state %s\n" % (errorlead, t))
symstack.append(lookahead)
lookahead = None
# Decrease error count on successful shift
if self.errorcount > 0:
self.errorcount -= 1
continue
if t < 0:
# reduce a symbol on the stack, emit a production
p = prod[-t]
pname = p.name
plen = p.len
# Get production function
sym = YaccSymbol()
sym.type = pname # Production name
sym.value = None
if debug > 1:
sys.stderr.write("%-60s reduce %d\n" % (errorlead, -t))
if plen:
targ = symstack[-plen-1:]
targ[0] = sym
try:
sym.lineno = targ[1].lineno
sym.endlineno = getattr(targ[-1],"endlineno",targ[-1].lineno)
sym.lexpos = targ[1].lexpos
sym.endlexpos = getattr(targ[-1],"endlexpos",targ[-1].lexpos)
except AttributeError:
sym.lineno = 0
del symstack[-plen:]
del statestack[-plen:]
else:
sym.lineno = 0
targ = [ sym ]
pslice.slice = targ
pslice.pbstack = []
# Call the grammar rule with our special slice object
p.func(pslice)
# If there was a pushback, put that on the stack
if pslice.pbstack:
lookaheadstack.append(lookahead)
for _t in pslice.pbstack:
lookaheadstack.append(_t)
lookahead = None
symstack.append(sym)
statestack.append(goto[statestack[-1],pname])
continue
if t == 0:
n = symstack[-1]
return getattr(n,"value",None)
sys.stderr.write(errorlead, "\n")
if t == None:
if debug:
sys.stderr.write(errorlead + "\n")
# We have some kind of parsing error here. To handle
# this, we are going to push the current token onto
# the tokenstack and replace it with an 'error' token.
# If there are any synchronization rules, they may
# catch it.
#
# In addition to pushing the error token, we call call
# the user defined p_error() function if this is the
# first syntax error. This function is only called if
# errorcount == 0.
if not self.errorcount:
self.errorcount = error_count
errtoken = lookahead
if errtoken.type == '$end':
errtoken = None # End of file!
if self.errorfunc:
global errok,token,restart
errok = self.errok # Set some special functions available in error recovery
token = get_token
restart = self.restart
tok = self.errorfunc(errtoken)
del errok, token, restart # Delete special functions
if not self.errorcount:
# User must have done some kind of panic
# mode recovery on their own. The
# returned token is the next lookahead
lookahead = tok
errtoken = None
continue
else:
if errtoken:
if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
else: lineno = 0
if lineno:
sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
else:
sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
else:
sys.stderr.write("yacc: Parse error in input. EOF\n")
return
else:
self.errorcount = error_count
# case 1: the statestack only has 1 entry on it. If we're in this state, the
# entire parse has been rolled back and we're completely hosed. The token is
# discarded and we just keep going.
if len(statestack) <= 1 and lookahead.type != '$end':
lookahead = None
errtoken = None
# Nuke the pushback stack
del lookaheadstack[:]
continue
# case 2: the statestack has a couple of entries on it, but we're
# at the end of the file. nuke the top entry and generate an error token
# Start nuking entries on the stack
if lookahead.type == '$end':
# Whoa. We're really hosed here. Bail out
return
if lookahead.type != 'error':
sym = symstack[-1]
if sym.type == 'error':
# Hmmm. Error is on top of stack, we'll just nuke input
# symbol and continue
lookahead = None
continue
t = YaccSymbol()
t.type = 'error'
if hasattr(lookahead,"lineno"):
t.lineno = lookahead.lineno
t.value = lookahead
lookaheadstack.append(lookahead)
lookahead = t
else:
symstack.pop()
statestack.pop()
continue
# Call an error function here
raise RuntimeError("yacc: internal parser error!!!\n")
# -----------------------------------------------------------------------------
# === Parser Construction ===
#
# The following functions and variables are used to implement the yacc() function
# itself. This is pretty hairy stuff involving lots of error checking,
# construction of LR items, kernels, and so forth. Although a lot of
# this work is done using global variables, the resulting Parser object
# is completely self contained--meaning that it is safe to repeatedly
# call yacc() with different grammars in the same application.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# validate_file()
#
# This function checks to see if there are duplicated p_rulename() functions
# in the parser module file. Without this function, it is really easy for
# users to make mistakes by cutting and pasting code fragments (and it's a real
# bugger to try and figure out why the resulting parser doesn't work). Therefore,
# we just do a little regular expression pattern matching of def statements
# to try and detect duplicates.
# -----------------------------------------------------------------------------
def validate_file(filename):
base,ext = os.path.splitext(filename)
if ext != '.py': return 1 # No idea. Assume it's okay.
try:
f = open(filename)
lines = f.readlines()
f.close()
except IOError:
return 1 # Oh well
# Match def p_funcname(
fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(')
counthash = { }
linen = 1
noerror = 1
for l in lines:
m = fre.match(l)
if m:
name = m.group(1)
prev = counthash.get(name)
if not prev:
counthash[name] = linen
else:
sys.stderr.write("%s:%d: Function %s redefined. Previously defined on line %d\n" % (filename,linen,name,prev))
noerror = 0
linen += 1
return noerror
# This function looks for functions that might be grammar rules, but which don't have the proper p_suffix.
def validate_dict(d):
for n,v in d.items():
if n[0:2] == 'p_' and type(v) in (types.FunctionType, types.MethodType): continue
if n[0:2] == 't_': continue
if n[0:2] == 'p_':
sys.stderr.write("yacc: Warning. '%s' not defined as a function\n" % n)
if 1 and isinstance(v,types.FunctionType) and v.__code__.co_argcount == 1:
try:
doc = v.__doc__.split(" ")
if doc[1] == ':':
sys.stderr.write("%s:%d: Warning. Possible grammar rule '%s' defined without p_ prefix.\n" % (v.__code__.co_filename, v.__code__.co_firstlineno,n))
except Exception:
pass
# -----------------------------------------------------------------------------
# === GRAMMAR FUNCTIONS ===
#
# The following global variables and functions are used to store, manipulate,
# and verify the grammar rules specified by the user.
# -----------------------------------------------------------------------------
# Initialize all of the global variables used during grammar construction
def initialize_vars():
global Productions, Prodnames, Prodmap, Terminals
global Nonterminals, First, Follow, Precedence, LRitems
global Errorfunc, Signature, Requires
Productions = [None] # A list of all of the productions. The first
# entry is always reserved for the purpose of
# building an augmented grammar
Prodnames = { } # A dictionary mapping the names of nonterminals to a list of all
# productions of that nonterminal.
Prodmap = { } # A dictionary that is only used to detect duplicate
# productions.
Terminals = { } # A dictionary mapping the names of terminal symbols to a
# list of the rules where they are used.
Nonterminals = { } # A dictionary mapping names of nonterminals to a list
# of rule numbers where they are used.
First = { } # A dictionary of precomputed FIRST(x) symbols
Follow = { } # A dictionary of precomputed FOLLOW(x) symbols
Precedence = { } # Precedence rules for each terminal. Contains tuples of the
# form ('right',level) or ('nonassoc', level) or ('left',level)
LRitems = [ ] # A list of all LR items for the grammar. These are the
# productions with the "dot" like E -> E . PLUS E
Errorfunc = None # User defined error handler
Signature = hashlib.sha256() # Digital signature of the grammar rules, precedence
# and other information. Used to determined when a
# parsing table needs to be regenerated.
Requires = { } # Requires list
# File objects used when creating the parser.out debugging file
global _vf, _vfc
_vf = StringIO()
_vfc = StringIO()
# -----------------------------------------------------------------------------
# class Production:
#
# This class stores the raw information about a single production or grammar rule.
# It has a few required attributes:
#
# name - Name of the production (nonterminal)
# prod - A list of symbols making up its production
# number - Production number.
#
# In addition, a few additional attributes are used to help with debugging or
# optimization of table generation.
#
# file - File where production action is defined.
# lineno - Line number where action is defined
# func - Action function
# prec - Precedence level
# lr_next - Next LR item. Example, if we are ' E -> E . PLUS E'
# then lr_next refers to 'E -> E PLUS . E'
# lr_index - LR item index (location of the ".") in the prod list.
# lookaheads - LALR lookahead symbols for this item
# len - Length of the production (number of symbols on right hand side)
# -----------------------------------------------------------------------------
class Production:
def __init__(self,**kw):
for k,v in kw.items():
setattr(self,k,v)
self.lr_index = -1
self.lr0_added = 0 # Flag indicating whether or not added to LR0 closure
self.lr1_added = 0 # Flag indicating whether or not added to LR1
self.usyms = [ ]
self.lookaheads = { }
self.lk_added = { }
self.setnumbers = [ ]
def __str__(self):
if self.prod:
s = "%s -> %s" % (self.name," ".join(self.prod))
else:
s = "%s -> <empty>" % self.name
return s
def __repr__(self):
return str(self)
# Compute lr_items from the production
def lr_item(self,n):
if n > len(self.prod): return None
p = Production()
p.name = self.name
p.prod = list(self.prod)
p.number = self.number
p.lr_index = n
p.lookaheads = { }
p.setnumbers = self.setnumbers
p.prod.insert(n,".")
p.prod = tuple(p.prod)
p.len = len(p.prod)
p.usyms = self.usyms
# Precompute list of productions immediately following
try:
p.lrafter = Prodnames[p.prod[n+1]]
except (IndexError,KeyError) as e:
p.lrafter = []
try:
p.lrbefore = p.prod[n-1]
except IndexError:
p.lrbefore = None
return p
class MiniProduction:
pass
# regex matching identifiers
_is_identifier = re.compile(r'^[a-zA-Z0-9_-~]+$')
# -----------------------------------------------------------------------------
# add_production()
#
# Given an action function, this function assembles a production rule.
# The production rule is assumed to be found in the function's docstring.
# This rule has the general syntax:
#
# name1 ::= production1
# | production2
# | production3
# ...
# | productionn
# name2 ::= production1
# | production2
# ...
# -----------------------------------------------------------------------------
def add_production(f,file,line,prodname,syms):
if prodname in Terminals:
sys.stderr.write("%s:%d: Illegal rule name '%s'. Already defined as a token.\n" % (file,line,prodname))
return -1
if prodname == 'error':
sys.stderr.write("%s:%d: Illegal rule name '%s'. error is a reserved word.\n" % (file,line,prodname))
return -1
if not _is_identifier.match(prodname):
sys.stderr.write("%s:%d: Illegal rule name '%s'\n" % (file,line,prodname))
return -1
for x in range(len(syms)):
s = syms[x]
if s[0] in "'\"":
try:
c = eval(s)
if (len(c) > 1):
sys.stderr.write("%s:%d: Literal token %s in rule '%s' may only be a single character\n" % (file,line,s, prodname))
return -1
if c not in Terminals:
Terminals[c] = []
syms[x] = c
continue
except SyntaxError:
pass
if not _is_identifier.match(s) and s != '%prec':
sys.stderr.write("%s:%d: Illegal name '%s' in rule '%s'\n" % (file,line,s, prodname))
return -1
# See if the rule is already in the rulemap
map = "%s -> %s" % (prodname,syms)
if map in Prodmap:
m = Prodmap[map]
sys.stderr.write("%s:%d: Duplicate rule %s.\n" % (file,line, m))
sys.stderr.write("%s:%d: Previous definition at %s:%d\n" % (file,line, m.file, m.line))
return -1
p = Production()
p.name = prodname
p.prod = syms
p.file = file
p.line = line
p.func = f
p.number = len(Productions)
Productions.append(p)
Prodmap[map] = p
if prodname not in Nonterminals:
Nonterminals[prodname] = [ ]
# Add all terminals to Terminals
i = 0
while i < len(p.prod):
t = p.prod[i]
if t == '%prec':
try:
precname = p.prod[i+1]
except IndexError:
sys.stderr.write("%s:%d: Syntax error. Nothing follows %%prec.\n" % (p.file,p.line))
return -1
prec = Precedence.get(precname,None)
if not prec:
sys.stderr.write("%s:%d: Nothing known about the precedence of '%s'\n" % (p.file,p.line,precname))
return -1
else:
p.prec = prec
del p.prod[i]
del p.prod[i]
continue
if t in Terminals:
Terminals[t].append(p.number)
# Is a terminal. We'll assign a precedence to p based on this
if not hasattr(p,"prec"):
p.prec = Precedence.get(t,('right',0))
else:
if t not in Nonterminals:
Nonterminals[t] = [ ]
Nonterminals[t].append(p.number)
i += 1
if not hasattr(p,"prec"):
p.prec = ('right',0)
# Set final length of productions
p.len = len(p.prod)
p.prod = tuple(p.prod)
# Calculate unique syms in the production
p.usyms = [ ]
for s in p.prod:
if s not in p.usyms:
p.usyms.append(s)
# Add to the global productions list
try:
Prodnames[p.name].append(p)
except KeyError:
Prodnames[p.name] = [ p ]
return 0
# Given a raw rule function, this function rips out its doc string
# and adds rules to the grammar
def add_function(f):
line = f.__code__.co_firstlineno
file = f.__code__.co_filename
error = 0
if isinstance(f,types.MethodType):
reqdargs = 2
else:
reqdargs = 1
if f.__code__.co_argcount > reqdargs:
sys.stderr.write("%s:%d: Rule '%s' has too many arguments.\n" % (file,line,f.__name__))
return -1
if f.__code__.co_argcount < reqdargs:
sys.stderr.write("%s:%d: Rule '%s' requires an argument.\n" % (file,line,f.__name__))
return -1
if f.__doc__:
# Split the doc string into lines
pstrings = f.__doc__.splitlines()
lastp = None
dline = line
for ps in pstrings:
dline += 1
p = ps.split()
if not p: continue
try:
if p[0] == '|':
# This is a continuation of a previous rule
if not lastp:
sys.stderr.write("%s:%d: Misplaced '|'.\n" % (file,dline))
return -1
prodname = lastp
if len(p) > 1:
syms = p[1:]
else:
syms = [ ]
else:
prodname = p[0]
lastp = prodname
assign = p[1]
if len(p) > 2:
syms = p[2:]
else:
syms = [ ]
if assign != ':' and assign != '::=':
sys.stderr.write("%s:%d: Syntax error. Expected ':'\n" % (file,dline))
return -1
e = add_production(f,file,dline,prodname,syms)
error += e
except Exception:
sys.stderr.write("%s:%d: Syntax error in rule '%s'\n" % (file,dline,ps))
error -= 1
else:
sys.stderr.write("%s:%d: No documentation string specified in function '%s'\n" % (file,line,f.__name__))
return error
# Cycle checking code (Michael Dyck)
def compute_reachable():
'''
Find each symbol that can be reached from the start symbol.
Print a warning for any nonterminals that can't be reached.
(Unused terminals have already had their warning.)
'''
Reachable = { }
for s in list(Terminals.keys()) + list(Nonterminals.keys()):
Reachable[s] = 0
mark_reachable_from( Productions[0].prod[0], Reachable )
for s in Nonterminals.keys():
if not Reachable[s]:
sys.stderr.write("yacc: Symbol '%s' is unreachable.\n" % s)
def mark_reachable_from(s, Reachable):
'''
Mark all symbols that are reachable from symbol s.
'''
if Reachable[s]:
# We've already reached symbol s.
return
Reachable[s] = 1
for p in Prodnames.get(s,[]):
for r in p.prod:
mark_reachable_from(r, Reachable)
# -----------------------------------------------------------------------------
# compute_terminates()
#
# This function looks at the various parsing rules and tries to detect
# infinite recursion cycles (grammar rules where there is no possible way
# to derive a string of only terminals).
# -----------------------------------------------------------------------------
def compute_terminates():
'''
Raise an error for any symbols that don't terminate.
'''
Terminates = {}
# Terminals:
for t in Terminals.keys():
Terminates[t] = 1
Terminates['$end'] = 1
# Nonterminals:
# Initialize to false:
for n in Nonterminals.keys():
Terminates[n] = 0
# Then propagate termination until no change:
while 1:
some_change = 0
for (n,pl) in Prodnames.items():
# Nonterminal n terminates iff any of its productions terminates.
for p in pl:
# Production p terminates iff all of its rhs symbols terminate.
for s in p.prod:
if not Terminates[s]:
# The symbol s does not terminate,
# so production p does not terminate.
p_terminates = 0
break
else:
# didn't break from the loop,
# so every symbol s terminates
# so production p terminates.
p_terminates = 1
if p_terminates:
# symbol n terminates!
if not Terminates[n]:
Terminates[n] = 1
some_change = 1
# Don't need to consider any more productions for this n.
break
if not some_change:
break
some_error = 0
for (s,terminates) in Terminates.items():
if not terminates:
if s not in Prodnames and s not in Terminals and s != 'error':
# s is used-but-not-defined, and we've already warned of that,
# so it would be overkill to say that it's also non-terminating.
pass
else:
sys.stderr.write("yacc: Infinite recursion detected for symbol '%s'.\n" % s)
some_error = 1
return some_error
# -----------------------------------------------------------------------------
# verify_productions()
#
# This function examines all of the supplied rules to see if they seem valid.
# -----------------------------------------------------------------------------
def verify_productions(cycle_check=1):
error = 0
for p in Productions:
if not p: continue
for s in p.prod:
if s not in Prodnames and s not in Terminals and s != 'error':
sys.stderr.write("%s:%d: Symbol '%s' used, but not defined as a token or a rule.\n" % (p.file,p.line,s))
error = 1
continue
unused_tok = 0
# Now verify all of the tokens
if yaccdebug:
_vf.write("Unused terminals:\n\n")
for s,v in Terminals.items():
if s != 'error' and not v:
sys.stderr.write("yacc: Warning. Token '%s' defined, but not used.\n" % s)
if yaccdebug: _vf.write(" %s\n"% s)
unused_tok += 1
# Print out all of the productions
if yaccdebug:
_vf.write("\nGrammar\n\n")
for i in range(1,len(Productions)):
_vf.write("Rule %-5d %s\n" % (i, Productions[i]))
unused_prod = 0
# Verify the use of all productions
for s,v in Nonterminals.items():
if not v:
p = Prodnames[s][0]
sys.stderr.write("%s:%d: Warning. Rule '%s' defined, but not used.\n" % (p.file,p.line, s))
unused_prod += 1
if unused_tok == 1:
sys.stderr.write("yacc: Warning. There is 1 unused token.\n")
if unused_tok > 1:
sys.stderr.write("yacc: Warning. There are %d unused tokens.\n" % unused_tok)
if unused_prod == 1:
sys.stderr.write("yacc: Warning. There is 1 unused rule.\n")
if unused_prod > 1:
sys.stderr.write("yacc: Warning. There are %d unused rules.\n" % unused_prod)
if yaccdebug:
_vf.write("\nTerminals, with rules where they appear\n\n")
ks = list(Terminals.keys())
ks.sort()
for k in ks:
_vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Terminals[k]])))
_vf.write("\nNonterminals, with rules where they appear\n\n")
ks = list(Nonterminals.keys())
ks.sort()
for k in ks:
_vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Nonterminals[k]])))
if (cycle_check):
compute_reachable()
error += compute_terminates()
# error += check_cycles()
return error
# -----------------------------------------------------------------------------
# build_lritems()
#
# This function walks the list of productions and builds a complete set of the
# LR items. The LR items are stored in two ways: First, they are uniquely
# numbered and placed in the list _lritems. Second, a linked list of LR items
# is built for each production. For example:
#
# E -> E PLUS E
#
# Creates the list
#
# [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ]
# -----------------------------------------------------------------------------
def build_lritems():
for p in Productions:
lastlri = p
lri = p.lr_item(0)
i = 0
while 1:
lri = p.lr_item(i)
lastlri.lr_next = lri
if not lri: break
lri.lr_num = len(LRitems)
LRitems.append(lri)
lastlri = lri
i += 1
# In order for the rest of the parser generator to work, we need to
# guarantee that no more lritems are generated. Therefore, we nuke
# the p.lr_item method. (Only used in debugging)
# Production.lr_item = None
# -----------------------------------------------------------------------------
# add_precedence()
#
# Given a list of precedence rules, add to the precedence table.
# -----------------------------------------------------------------------------
def add_precedence(plist):
plevel = 0
error = 0
for p in plist:
plevel += 1
try:
prec = p[0]
terms = p[1:]
if prec != 'left' and prec != 'right' and prec != 'nonassoc':
sys.stderr.write("yacc: Invalid precedence '%s'\n" % prec)
return -1
for t in terms:
if t in Precedence:
sys.stderr.write("yacc: Precedence already specified for terminal '%s'\n" % t)
error += 1
continue
Precedence[t] = (prec,plevel)
except:
sys.stderr.write("yacc: Invalid precedence table.\n")
error += 1
return error
# -----------------------------------------------------------------------------
# augment_grammar()
#
# Compute the augmented grammar. This is just a rule S' -> start where start
# is the starting symbol.
# -----------------------------------------------------------------------------
def augment_grammar(start=None):
if not start:
start = Productions[1].name
Productions[0] = Production(name="S'",prod=[start],number=0,len=1,prec=('right',0),func=None)
Productions[0].usyms = [ start ]
Nonterminals[start].append(0)
# -------------------------------------------------------------------------
# first()
#
# Compute the value of FIRST1(beta) where beta is a tuple of symbols.
#
# During execution of compute_first1, the result may be incomplete.
# Afterward (e.g., when called from compute_follow()), it will be complete.
# -------------------------------------------------------------------------
def first(beta):
# We are computing First(x1,x2,x3,...,xn)
result = [ ]
for x in beta:
x_produces_empty = 0
# Add all the non-<empty> symbols of First[x] to the result.
for f in First[x]:
if f == '<empty>':
x_produces_empty = 1
else:
if f not in result: result.append(f)
if x_produces_empty:
# We have to consider the next x in beta,
# i.e. stay in the loop.
pass
else:
# We don't have to consider any further symbols in beta.
break
else:
# There was no 'break' from the loop,
# so x_produces_empty was true for all x in beta,
# so beta produces empty as well.
result.append('<empty>')
return result
# FOLLOW(x)
# Given a non-terminal. This function computes the set of all symbols
# that might follow it. Dragon book, p. 189.
def compute_follow(start=None):
# Add '$end' to the follow list of the start symbol
for k in Nonterminals.keys():
Follow[k] = [ ]
if not start:
start = Productions[1].name
Follow[start] = [ '$end' ]
while 1:
didadd = 0
for p in Productions[1:]:
# Here is the production set
for i in range(len(p.prod)):
B = p.prod[i]
if B in Nonterminals:
# Okay. We got a non-terminal in a production
fst = first(p.prod[i+1:])
hasempty = 0
for f in fst:
if f != '<empty>' and f not in Follow[B]:
Follow[B].append(f)
didadd = 1
if f == '<empty>':
hasempty = 1
if hasempty or i == (len(p.prod)-1):
# Add elements of follow(a) to follow(b)
for f in Follow[p.name]:
if f not in Follow[B]:
Follow[B].append(f)
didadd = 1
if not didadd: break
if 0 and yaccdebug:
_vf.write('\nFollow:\n')
for k in Nonterminals.keys():
_vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Follow[k]])))
# -------------------------------------------------------------------------
# compute_first1()
#
# Compute the value of FIRST1(X) for all symbols
# -------------------------------------------------------------------------
def compute_first1():
# Terminals:
for t in Terminals.keys():
First[t] = [t]
First['$end'] = ['$end']
First['#'] = ['#'] # what's this for?
# Nonterminals:
# Initialize to the empty set:
for n in Nonterminals.keys():
First[n] = []
# Then propagate symbols until no change:
while 1:
some_change = 0
for n in Nonterminals.keys():
for p in Prodnames[n]:
for f in first(p.prod):
if f not in First[n]:
First[n].append( f )
some_change = 1
if not some_change:
break
if 0 and yaccdebug:
_vf.write('\nFirst:\n')
for k in Nonterminals.keys():
_vf.write("%-20s : %s\n" %
(k, " ".join([str(s) for s in First[k]])))
# -----------------------------------------------------------------------------
# === SLR Generation ===
#
# The following functions are used to construct SLR (Simple LR) parsing tables
# as described on p.221-229 of the dragon book.
# -----------------------------------------------------------------------------
# Global variables for the LR parsing engine
def lr_init_vars():
global _lr_action, _lr_goto, _lr_method
global _lr_goto_cache, _lr0_cidhash
_lr_action = { } # Action table
_lr_goto = { } # Goto table
_lr_method = "Unknown" # LR method used
_lr_goto_cache = { }
_lr0_cidhash = { }
# Compute the LR(0) closure operation on I, where I is a set of LR(0) items.
# prodlist is a list of productions.
_add_count = 0 # Counter used to detect cycles
def lr0_closure(I):
global _add_count
_add_count += 1
prodlist = Productions
# Add everything in I to J
J = I[:]
didadd = 1
while didadd:
didadd = 0
for j in J:
for x in j.lrafter:
if x.lr0_added == _add_count: continue
# Add B --> .G to J
J.append(x.lr_next)
x.lr0_added = _add_count
didadd = 1
return J
# Compute the LR(0) goto function goto(I,X) where I is a set
# of LR(0) items and X is a grammar symbol. This function is written
# in a way that guarantees uniqueness of the generated goto sets
# (i.e. the same goto set will never be returned as two different Python
# objects). With uniqueness, we can later do fast set comparisons using
# id(obj) instead of element-wise comparison.
def lr0_goto(I,x):
# First we look for a previously cached entry
g = _lr_goto_cache.get((id(I),x),None)
if g: return g
# Now we generate the goto set in a way that guarantees uniqueness
# of the result
s = _lr_goto_cache.get(x,None)
if not s:
s = { }
_lr_goto_cache[x] = s
gs = [ ]
for p in I:
n = p.lr_next
if n and n.lrbefore == x:
s1 = s.get(id(n),None)
if not s1:
s1 = { }
s[id(n)] = s1
gs.append(n)
s = s1
g = s.get('$end',None)
if not g:
if gs:
g = lr0_closure(gs)
s['$end'] = g
else:
s['$end'] = gs
_lr_goto_cache[(id(I),x)] = g
return g
_lr0_cidhash = { }
# Compute the LR(0) sets of item function
def lr0_items():
C = [ lr0_closure([Productions[0].lr_next]) ]
i = 0
for I in C:
_lr0_cidhash[id(I)] = i
i += 1
# Loop over the items in C and each grammar symbols
i = 0
while i < len(C):
I = C[i]
i += 1
# Collect all of the symbols that could possibly be in the goto(I,X) sets
asyms = { }
for ii in I:
for s in ii.usyms:
asyms[s] = None
for x in asyms.keys():
g = lr0_goto(I,x)
if not g: continue
if id(g) in _lr0_cidhash: continue
_lr0_cidhash[id(g)] = len(C)
C.append(g)
return C
# -----------------------------------------------------------------------------
# ==== LALR(1) Parsing ====
#
# LALR(1) parsing is almost exactly the same as SLR except that instead of
# relying upon Follow() sets when performing reductions, a more selective
# lookahead set that incorporates the state of the LR(0) machine is utilized.
# Thus, we mainly just have to focus on calculating the lookahead sets.
#
# The method used here is due to DeRemer and Pennelo (1982).
#
# DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1)
# Lookahead Sets", ACM Transactions on Programming Languages and Systems,
# Vol. 4, No. 4, Oct. 1982, pp. 615-649
#
# Further details can also be found in:
#
# J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing",
# McGraw-Hill Book Company, (1985).
#
# Note: This implementation is a complete replacement of the LALR(1)
# implementation in PLY-1.x releases. That version was based on
# a less efficient algorithm and it had bugs in its implementation.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# compute_nullable_nonterminals()
#
# Creates a dictionary containing all of the non-terminals that might produce
# an empty production.
# -----------------------------------------------------------------------------
def compute_nullable_nonterminals():
nullable = {}
num_nullable = 0
while 1:
for p in Productions[1:]:
if p.len == 0:
nullable[p.name] = 1
continue
for t in p.prod:
if t not in nullable: break
else:
nullable[p.name] = 1
if len(nullable) == num_nullable: break
num_nullable = len(nullable)
return nullable
# -----------------------------------------------------------------------------
# find_nonterminal_trans(C)
#
# Given a set of LR(0) items, this functions finds all of the non-terminal
# transitions. These are transitions in which a dot appears immediately before
# a non-terminal. Returns a list of tuples of the form (state,N) where state
# is the state number and N is the nonterminal symbol.
#
# The input C is the set of LR(0) items.
# -----------------------------------------------------------------------------
def find_nonterminal_transitions(C):
trans = []
for state in range(len(C)):
for p in C[state]:
if p.lr_index < p.len - 1:
t = (state,p.prod[p.lr_index+1])
if t[1] in Nonterminals:
if t not in trans: trans.append(t)
state = state + 1
return trans
# -----------------------------------------------------------------------------
# dr_relation()
#
# Computes the DR(p,A) relationships for non-terminal transitions. The input
# is a tuple (state,N) where state is a number and N is a nonterminal symbol.
#
# Returns a list of terminals.
# -----------------------------------------------------------------------------
def dr_relation(C,trans,nullable):
dr_set = { }
state,N = trans
terms = []
g = lr0_goto(C[state],N)
for p in g:
if p.lr_index < p.len - 1:
a = p.prod[p.lr_index+1]
if a in Terminals:
if a not in terms: terms.append(a)
# This extra bit is to handle the start state
if state == 0 and N == Productions[0].prod[0]:
terms.append('$end')
return terms
# -----------------------------------------------------------------------------
# reads_relation()
#
# Computes the READS() relation (p,A) READS (t,C).
# -----------------------------------------------------------------------------
def reads_relation(C, trans, empty):
# Look for empty transitions
rel = []
state, N = trans
g = lr0_goto(C[state],N)
j = _lr0_cidhash.get(id(g),-1)
for p in g:
if p.lr_index < p.len - 1:
a = p.prod[p.lr_index + 1]
if a in empty:
rel.append((j,a))
return rel
# -----------------------------------------------------------------------------
# compute_lookback_includes()
#
# Determines the lookback and includes relations
#
# LOOKBACK:
#
# This relation is determined by running the LR(0) state machine forward.
# For example, starting with a production "N : . A B C", we run it forward
# to obtain "N : A B C ." We then build a relationship between this final
# state and the starting state. These relationships are stored in a dictionary
# lookdict.
#
# INCLUDES:
#
# Computes the INCLUDE() relation (p,A) INCLUDES (p',B).
#
# This relation is used to determine non-terminal transitions that occur
# inside of other non-terminal transition states. (p,A) INCLUDES (p', B)
# if the following holds:
#
# B -> LAT, where T -> epsilon and p' -L-> p
#
# L is essentially a prefix (which may be empty), T is a suffix that must be
# able to derive an empty string. State p' must lead to state p with the string L.
#
# -----------------------------------------------------------------------------
def compute_lookback_includes(C,trans,nullable):
lookdict = {} # Dictionary of lookback relations
includedict = {} # Dictionary of include relations
# Make a dictionary of non-terminal transitions
dtrans = {}
for t in trans:
dtrans[t] = 1
# Loop over all transitions and compute lookbacks and includes
for state,N in trans:
lookb = []
includes = []
for p in C[state]:
if p.name != N: continue
# Okay, we have a name match. We now follow the production all the way
# through the state machine until we get the . on the right hand side
lr_index = p.lr_index
j = state
while lr_index < p.len - 1:
lr_index = lr_index + 1
t = p.prod[lr_index]
# Check to see if this symbol and state are a non-terminal transition
if (j,t) in dtrans:
# Yes. Okay, there is some chance that this is an includes relation
# the only way to know for certain is whether the rest of the
# production derives empty
li = lr_index + 1
while li < p.len:
if p.prod[li] in Terminals: break # No forget it
if p.prod[li] not in nullable: break
li = li + 1
else:
# Appears to be a relation between (j,t) and (state,N)
includes.append((j,t))
g = lr0_goto(C[j],t) # Go to next set
j = _lr0_cidhash.get(id(g),-1) # Go to next state
# When we get here, j is the final state, now we have to locate the production
for r in C[j]:
if r.name != p.name: continue
if r.len != p.len: continue
i = 0
# This look is comparing a production ". A B C" with "A B C ."
while i < r.lr_index:
if r.prod[i] != p.prod[i+1]: break
i = i + 1
else:
lookb.append((j,r))
for i in includes:
if i not in includedict: includedict[i] = []
includedict[i].append((state,N))
lookdict[(state,N)] = lookb
return lookdict,includedict
# -----------------------------------------------------------------------------
# digraph()
# traverse()
#
# The following two functions are used to compute set valued functions
# of the form:
#
# F(x) = F'(x) U U{F(y) | x R y}
#
# This is used to compute the values of Read() sets as well as FOLLOW sets
# in LALR(1) generation.
#
# Inputs: X - An input set
# R - A relation
# FP - Set-valued function
# ------------------------------------------------------------------------------
def digraph(X,R,FP):
N = { }
for x in X:
N[x] = 0
stack = []
F = { }
for x in X:
if N[x] == 0: traverse(x,N,stack,F,X,R,FP)
return F
def traverse(x,N,stack,F,X,R,FP):
stack.append(x)
d = len(stack)
N[x] = d
F[x] = FP(x) # F(X) <- F'(x)
rel = R(x) # Get y's related to x
for y in rel:
if N[y] == 0:
traverse(y,N,stack,F,X,R,FP)
N[x] = min(N[x],N[y])
for a in F.get(y,[]):
if a not in F[x]: F[x].append(a)
if N[x] == d:
N[stack[-1]] = sys.maxsize
F[stack[-1]] = F[x]
element = stack.pop()
while element != x:
N[stack[-1]] = sys.maxsize
F[stack[-1]] = F[x]
element = stack.pop()
# -----------------------------------------------------------------------------
# compute_read_sets()
#
# Given a set of LR(0) items, this function computes the read sets.
#
# Inputs: C = Set of LR(0) items
# ntrans = Set of nonterminal transitions
# nullable = Set of empty transitions
#
# Returns a set containing the read sets
# -----------------------------------------------------------------------------
def compute_read_sets(C, ntrans, nullable):
FP = lambda x: dr_relation(C,x,nullable)
R = lambda x: reads_relation(C,x,nullable)
F = digraph(ntrans,R,FP)
return F
# -----------------------------------------------------------------------------
# compute_follow_sets()
#
# Given a set of LR(0) items, a set of non-terminal transitions, a readset,
# and an include set, this function computes the follow sets
#
# Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)}
#
# Inputs:
# ntrans = Set of nonterminal transitions
# readsets = Readset (previously computed)
# inclsets = Include sets (previously computed)
#
# Returns a set containing the follow sets
# -----------------------------------------------------------------------------
def compute_follow_sets(ntrans,readsets,inclsets):
FP = lambda x: readsets[x]
R = lambda x: inclsets.get(x,[])
F = digraph(ntrans,R,FP)
return F
# -----------------------------------------------------------------------------
# add_lookaheads()
#
# Attaches the lookahead symbols to grammar rules.
#
# Inputs: lookbacks - Set of lookback relations
# followset - Computed follow set
#
# This function directly attaches the lookaheads to productions contained
# in the lookbacks set
# -----------------------------------------------------------------------------
def add_lookaheads(lookbacks,followset):
for trans,lb in lookbacks.items():
# Loop over productions in lookback
for state,p in lb:
if state not in p.lookaheads:
p.lookaheads[state] = []
f = followset.get(trans,[])
for a in f:
if a not in p.lookaheads[state]: p.lookaheads[state].append(a)
# -----------------------------------------------------------------------------
# add_lalr_lookaheads()
#
# This function does all of the work of adding lookahead information for use
# with LALR parsing
# -----------------------------------------------------------------------------
def add_lalr_lookaheads(C):
# Determine all of the nullable nonterminals
nullable = compute_nullable_nonterminals()
# Find all non-terminal transitions
trans = find_nonterminal_transitions(C)
# Compute read sets
readsets = compute_read_sets(C,trans,nullable)
# Compute lookback/includes relations
lookd, included = compute_lookback_includes(C,trans,nullable)
# Compute LALR FOLLOW sets
followsets = compute_follow_sets(trans,readsets,included)
# Add all of the lookaheads
add_lookaheads(lookd,followsets)
# -----------------------------------------------------------------------------
# lr_parse_table()
#
# This function constructs the parse tables for SLR or LALR
# -----------------------------------------------------------------------------
def lr_parse_table(method):
global _lr_method
goto = _lr_goto # Goto array
action = _lr_action # Action array
actionp = { } # Action production array (temporary)
_lr_method = method
n_srconflict = 0
n_rrconflict = 0
if yaccdebug:
sys.stderr.write("yacc: Generating %s parsing table...\n" % method)
_vf.write("\n\nParsing method: %s\n\n" % method)
# Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items
# This determines the number of states
C = lr0_items()
if method == 'LALR':
add_lalr_lookaheads(C)
# Build the parser table, state by state
st = 0
for I in C:
# Loop over each production in I
actlist = [ ] # List of actions
if yaccdebug:
_vf.write("\nstate %d\n\n" % st)
for p in I:
_vf.write(" (%d) %s\n" % (p.number, str(p)))
_vf.write("\n")
for p in I:
try:
if p.prod[-1] == ".":
if p.name == "S'":
# Start symbol. Accept!
action[st,"$end"] = 0
actionp[st,"$end"] = p
else:
# We are at the end of a production. Reduce!
if method == 'LALR':
laheads = p.lookaheads[st]
else:
laheads = Follow[p.name]
for a in laheads:
actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p)))
r = action.get((st,a),None)
if r is not None:
# Whoa. Have a shift/reduce or reduce/reduce conflict
if r > 0:
# Need to decide on shift or reduce here
# By default we favor shifting. Need to add
# some precedence rules here.
sprec,slevel = Productions[actionp[st,a].number].prec
rprec,rlevel = Precedence.get(a,('right',0))
if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')):
# We really need to reduce here.
action[st,a] = -p.number
actionp[st,a] = p
if not slevel and not rlevel:
_vfc.write("shift/reduce conflict in state %d resolved as reduce.\n" % st)
_vf.write(" ! shift/reduce conflict for %s resolved as reduce.\n" % a)
n_srconflict += 1
elif (slevel == rlevel) and (rprec == 'nonassoc'):
action[st,a] = None
else:
# Hmmm. Guess we'll keep the shift
if not rlevel:
_vfc.write("shift/reduce conflict in state %d resolved as shift.\n" % st)
_vf.write(" ! shift/reduce conflict for %s resolved as shift.\n" % a)
n_srconflict +=1
elif r < 0:
# Reduce/reduce conflict. In this case, we favor the rule
# that was defined first in the grammar file
oldp = Productions[-r]
pp = Productions[p.number]
if oldp.line > pp.line:
action[st,a] = -p.number
actionp[st,a] = p
# sys.stderr.write("Reduce/reduce conflict in state %d\n" % st)
n_rrconflict += 1
_vfc.write("reduce/reduce conflict in state %d resolved using rule %d (%s).\n" % (st, actionp[st,a].number, actionp[st,a]))
_vf.write(" ! reduce/reduce conflict for %s resolved using rule %d (%s).\n" % (a,actionp[st,a].number, actionp[st,a]))
else:
sys.stderr.write("Unknown conflict in state %d\n" % st)
else:
action[st,a] = -p.number
actionp[st,a] = p
else:
i = p.lr_index
a = p.prod[i+1] # Get symbol right after the "."
if a in Terminals:
g = lr0_goto(I,a)
j = _lr0_cidhash.get(id(g),-1)
if j >= 0:
# We are in a shift state
actlist.append((a,p,"shift and go to state %d" % j))
r = action.get((st,a),None)
if r is not None:
# Whoa have a shift/reduce or shift/shift conflict
if r > 0:
if r != j:
sys.stderr.write("Shift/shift conflict in state %d\n" % st)
elif r < 0:
# Do a precedence check.
# - if precedence of reduce rule is higher, we reduce.
# - if precedence of reduce is same and left assoc, we reduce.
# - otherwise we shift
rprec,rlevel = Productions[actionp[st,a].number].prec
sprec,slevel = Precedence.get(a,('right',0))
if (slevel > rlevel) or ((slevel == rlevel) and (rprec != 'left')):
# We decide to shift here... highest precedence to shift
action[st,a] = j
actionp[st,a] = p
if not rlevel:
n_srconflict += 1
_vfc.write("shift/reduce conflict in state %d resolved as shift.\n" % st)
_vf.write(" ! shift/reduce conflict for %s resolved as shift.\n" % a)
elif (slevel == rlevel) and (rprec == 'nonassoc'):
action[st,a] = None
else:
# Hmmm. Guess we'll keep the reduce
if not slevel and not rlevel:
n_srconflict +=1
_vfc.write("shift/reduce conflict in state %d resolved as reduce.\n" % st)
_vf.write(" ! shift/reduce conflict for %s resolved as reduce.\n" % a)
else:
sys.stderr.write("Unknown conflict in state %d\n" % st)
else:
action[st,a] = j
actionp[st,a] = p
except Exception as e:
raise YaccError("Hosed in lr_parse_table").with_traceback(e)
# Print the actions associated with each terminal
if yaccdebug:
_actprint = { }
for a,p,m in actlist:
if (st,a) in action:
if p is actionp[st,a]:
_vf.write(" %-15s %s\n" % (a,m))
_actprint[(a,m)] = 1
_vf.write("\n")
for a,p,m in actlist:
if (st,a) in action:
if p is not actionp[st,a]:
if (a,m) not in _actprint:
_vf.write(" ! %-15s [ %s ]\n" % (a,m))
_actprint[(a,m)] = 1
# Construct the goto table for this state
if yaccdebug:
_vf.write("\n")
nkeys = { }
for ii in I:
for s in ii.usyms:
if s in Nonterminals:
nkeys[s] = None
for n in nkeys.keys():
g = lr0_goto(I,n)
j = _lr0_cidhash.get(id(g),-1)
if j >= 0:
goto[st,n] = j
if yaccdebug:
_vf.write(" %-30s shift and go to state %d\n" % (n,j))
st += 1
if yaccdebug:
if n_srconflict == 1:
sys.stderr.write("yacc: %d shift/reduce conflict\n" % n_srconflict)
if n_srconflict > 1:
sys.stderr.write("yacc: %d shift/reduce conflicts\n" % n_srconflict)
if n_rrconflict == 1:
sys.stderr.write("yacc: %d reduce/reduce conflict\n" % n_rrconflict)
if n_rrconflict > 1:
sys.stderr.write("yacc: %d reduce/reduce conflicts\n" % n_rrconflict)
# -----------------------------------------------------------------------------
# ==== LR Utility functions ====
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# _lr_write_tables()
#
# This function writes the LR parsing tables to a file
# -----------------------------------------------------------------------------
def lr_write_tables(modulename=tab_module,outputdir=''):
filename = os.path.join(outputdir,modulename) + ".py"
try:
f = open(filename,"w")
f.write("""
# %s
# This file is automatically generated. Do not edit.
_lr_method = %s
_lr_signature = %s
""" % (filename, repr(_lr_method), repr(Signature.digest())))
# Change smaller to 0 to go back to original tables
smaller = 1
# Factor out names to try and make smaller
if smaller:
items = { }
for k,v in _lr_action.items():
i = items.get(k[1])
if not i:
i = ([],[])
items[k[1]] = i
i[0].append(k[0])
i[1].append(v)
f.write("\n_lr_action_items = {")
for k,v in items.items():
f.write("%r:([" % k)
for i in v[0]:
f.write("%r," % i)
f.write("],[")
for i in v[1]:
f.write("%r," % i)
f.write("]),")
f.write("}\n")
f.write("""
_lr_action = { }
for _k, _v in _lr_action_items.items():
for _x,_y in zip(_v[0],_v[1]):
_lr_action[(_x,_k)] = _y
del _lr_action_items
""")
else:
f.write("\n_lr_action = { ");
for k,v in _lr_action.items():
f.write("(%r,%r):%r," % (k[0],k[1],v))
f.write("}\n");
if smaller:
# Factor out names to try and make smaller
items = { }
for k,v in _lr_goto.items():
i = items.get(k[1])
if not i:
i = ([],[])
items[k[1]] = i
i[0].append(k[0])
i[1].append(v)
f.write("\n_lr_goto_items = {")
for k,v in items.items():
f.write("%r:([" % k)
for i in v[0]:
f.write("%r," % i)
f.write("],[")
for i in v[1]:
f.write("%r," % i)
f.write("]),")
f.write("}\n")
f.write("""
_lr_goto = { }
for _k, _v in _lr_goto_items.items():
for _x,_y in zip(_v[0],_v[1]):
_lr_goto[(_x,_k)] = _y
del _lr_goto_items
""")
else:
f.write("\n_lr_goto = { ");
for k,v in _lr_goto.items():
f.write("(%r,%r):%r," % (k[0],k[1],v))
f.write("}\n");
# Write production table
f.write("_lr_productions = [\n")
for p in Productions:
if p:
if (p.func):
f.write(" (%r,%d,%r,%r,%d),\n" % (p.name, p.len, p.func.__name__,p.file,p.line))
else:
f.write(" (%r,%d,None,None,None),\n" % (p.name, p.len))
else:
f.write(" None,\n")
f.write("]\n")
f.close()
except IOError as e:
print("Unable to create '%s'" % filename)
print(e)
def lr_read_tables(module=tab_module,optimize=0):
global _lr_action, _lr_goto, _lr_productions, _lr_method
try:
exec("import %s as parsetab" % module)
if (optimize) or (Signature.digest() == parsetab._lr_signature):
_lr_action = parsetab._lr_action
_lr_goto = parsetab._lr_goto
_lr_productions = parsetab._lr_productions
_lr_method = parsetab._lr_method
return 1
else:
return 0
except (ImportError,AttributeError):
return 0
# Available instance types. This is used when parsers are defined by a class.
# In Python3 the InstanceType and ObjectType are no more, they've passed, ceased
# to be, they are ex-classes along with old-style classes
try:
_INSTANCETYPE = (types.InstanceType, types.ObjectType)
except AttributeError:
_INSTANCETYPE = object
# -----------------------------------------------------------------------------
# yacc(module)
#
# Build the parser module
# -----------------------------------------------------------------------------
def yacc(method=default_lr, debug=yaccdebug, module=None, tabmodule=tab_module, start=None, check_recursion=1, optimize=0,write_tables=1,debugfile=debug_file,outputdir=''):
global yaccdebug
yaccdebug = debug
initialize_vars()
files = { }
error = 0
# Add parsing method to signature
Signature.update(util.encode_input(method))
# If a "module" parameter was supplied, extract its dictionary.
# Note: a module may in fact be an instance as well.
if module:
# User supplied a module object.
if isinstance(module, types.ModuleType):
ldict = module.__dict__
elif isinstance(module, _INSTANCETYPE):
_items = [(k,getattr(module,k)) for k in dir(module)]
ldict = { }
for i in _items:
ldict[i[0]] = i[1]
else:
raise ValueError("Expected a module")
else:
# No module given. We might be able to get information from the caller.
# Throw an exception and unwind the traceback to get the globals
try:
raise RuntimeError
except RuntimeError:
e,b,t = sys.exc_info()
f = t.tb_frame
f = f.f_back # Walk out to our calling function
ldict = f.f_globals # Grab its globals dictionary
# Add starting symbol to signature
if not start:
start = ldict.get("start",None)
if start:
Signature.update(util.encode_input(start))
# If running in optimized mode. We're going to
if (optimize and lr_read_tables(tabmodule,1)):
# Read parse table
del Productions[:]
for p in _lr_productions:
if not p:
Productions.append(None)
else:
m = MiniProduction()
m.name = p[0]
m.len = p[1]
m.file = p[3]
m.line = p[4]
if p[2]:
m.func = ldict[p[2]]
Productions.append(m)
else:
# Get the tokens map
if (module and isinstance(module,_INSTANCETYPE)):
tokens = getattr(module,"tokens",None)
else:
tokens = ldict.get("tokens",None)
if not tokens:
raise YaccError("module does not define a list 'tokens'")
if not (isinstance(tokens,list) or isinstance(tokens,tuple)):
raise YaccError("tokens must be a list or tuple.")
# Check to see if a requires dictionary is defined.
requires = ldict.get("require",None)
if requires:
if not (isinstance(requires,dict)):
raise YaccError("require must be a dictionary.")
for r,v in requires.items():
try:
if not (isinstance(v,list)):
raise TypeError
v1 = [x.split(".") for x in v]
Requires[r] = v1
except Exception:
print("Invalid specification for rule '%s' in require. Expected a list of strings" % r)
# Build the dictionary of terminals. We a record a 0 in the
# dictionary to track whether or not a terminal is actually
# used in the grammar
if 'error' in tokens:
print("yacc: Illegal token 'error'. Is a reserved word.")
raise YaccError("Illegal token name")
for n in tokens:
if n in Terminals:
print("yacc: Warning. Token '%s' multiply defined." % n)
Terminals[n] = [ ]
Terminals['error'] = [ ]
# Get the precedence map (if any)
prec = ldict.get("precedence",None)
if prec:
if not (isinstance(prec,list) or isinstance(prec,tuple)):
raise YaccError("precedence must be a list or tuple.")
add_precedence(prec)
Signature.update(util.encode_input(repr(prec)))
for n in tokens:
if n not in Precedence:
Precedence[n] = ('right',0) # Default, right associative, 0 precedence
# Look for error handler
ef = ldict.get('p_error',None)
if ef:
if isinstance(ef,types.FunctionType):
ismethod = 0
elif isinstance(ef, types.MethodType):
ismethod = 1
else:
raise YaccError("'p_error' defined, but is not a function or method.")
eline = ef.__code__.co_firstlineno
efile = ef.__code__.co_filename
files[efile] = None
if (ef.__code__.co_argcount != 1+ismethod):
raise YaccError("%s:%d: p_error() requires 1 argument." % (efile,eline))
global Errorfunc
Errorfunc = ef
else:
print("yacc: Warning. no p_error() function is defined.")
# Get the list of built-in functions with p_ prefix
symbols = [ldict[f] for f in ldict.keys()
if (type(ldict[f]) in (types.FunctionType, types.MethodType) and ldict[f].__name__[:2] == 'p_'
and ldict[f].__name__ != 'p_error')]
# Check for non-empty symbols
if len(symbols) == 0:
raise YaccError("no rules of the form p_rulename are defined.")
# Sort the symbols by line number
symbols.sort(key=lambda x: x.__code__.co_firstlineno)
# Add all of the symbols to the grammar
for f in symbols:
if (add_function(f)) < 0:
error += 1
else:
files[f.__code__.co_filename] = None
# Make a signature of the docstrings
for f in symbols:
if f.__doc__:
Signature.update(util.encode_input(f.__doc__))
lr_init_vars()
if error:
raise YaccError("Unable to construct parser.")
if not lr_read_tables(tabmodule):
# Validate files
for filename in files.keys():
if not validate_file(filename):
error = 1
# Validate dictionary
validate_dict(ldict)
if start and start not in Prodnames:
raise YaccError("Bad starting symbol '%s'" % start)
augment_grammar(start)
error = verify_productions(cycle_check=check_recursion)
otherfunc = [ldict[f] for f in ldict.keys()
if (type(f) in (types.FunctionType,types.MethodType) and ldict[f].__name__[:2] != 'p_')]
if error:
raise YaccError("Unable to construct parser.")
build_lritems()
compute_first1()
compute_follow(start)
if method in ['SLR','LALR']:
lr_parse_table(method)
else:
raise YaccError("Unknown parsing method '%s'" % method)
if write_tables:
lr_write_tables(tabmodule,outputdir)
if yaccdebug:
try:
f = open(os.path.join(outputdir,debugfile),"w")
f.write(_vfc.getvalue())
f.write("\n\n")
f.write(_vf.getvalue())
f.close()
except IOError as e:
print("yacc: can't create '%s'" % debugfile,e)
# Made it here. Create a parser object and set up its internal state.
# Set global parse() method to bound method of parser object.
p = Parser("xyzzy")
p.productions = Productions
p.errorfunc = Errorfunc
p.action = _lr_action
p.goto = _lr_goto
p.method = _lr_method
p.require = Requires
global parse
parse = p.parse
global parser
parser = p
# Clean up all of the globals we created
if (not optimize):
yacc_cleanup()
return p
# yacc_cleanup function. Delete all of the global variables
# used during table construction
def yacc_cleanup():
global _lr_action, _lr_goto, _lr_method, _lr_goto_cache
del _lr_action, _lr_goto, _lr_method, _lr_goto_cache
global Productions, Prodnames, Prodmap, Terminals
global Nonterminals, First, Follow, Precedence, LRitems
global Errorfunc, Signature, Requires
del Productions, Prodnames, Prodmap, Terminals
del Nonterminals, First, Follow, Precedence, LRitems
del Errorfunc, Signature, Requires
global _vf, _vfc
del _vf, _vfc
# Stub that raises an error if parsing is attempted without first calling yacc()
def parse(*args,**kwargs):
raise YaccError("yacc: No parser built with yacc()")
SEA-GHOST - SHELL CODING BY SEA-GHOST